Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
2.
Environ Res ; 243: 117804, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38042519

RESUMEN

Limiting the negative impact of climate change on nature and humans is one of the most pressing issues of the 21st century. Meanwhile, people in modern society spend most of the day indoors. It is therefore surprising that comparatively little attention has been paid to indoor human exposure in relation to climate change. Heat action plans have now been designed in many regions to protect people from thermal stress in their private homes and in public buildings. However, in order to be able to plan effectively for the future, reliable information is required about the long-term effects of climate change on indoor air quality and climate. The Indoor Air Quality Climate Change (IAQCC) model is an expediant tool for estimating the influence of climate change on indoor air quality. The model follows a holistic approach in which building physics, emissions, chemical reactions, mold growth and exposure are combined with the fundamental parameters of temperature and humidity. The features of the model have already been presented in an earlier publication, and it is now used for the expected climatic conditions in Central Europe, taking into account various shared socioeconomic pathway (SSP) scenarios up to the year 2100. For the test house examined in this study, the concentrations of pollutants in the indoor air will continue to rise. At the same time, the risk of mold growth also increases (the mold index rose from 0 to 4 in the worst case for very sensitive material). The biggest problem, however, is protection against heat and humidity. Massive structural improvements are needed here, including insulation, ventilation, and direct sun protection. Otherwise, the occupants will be exposed to increasing thermal discomfort, which can also lead to severe heat stress indoors.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Humanos , Cambio Climático , Contaminación del Aire Interior/análisis , Humedad , Ventilación
3.
J Hazard Mater ; 464: 132949, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976847

RESUMEN

Cannabis is a genus of plants in the Cannabaceae family that contains tetrahydrocannabinolic acid. When heated or burned, the acid decarboxylates to form tetrahydrocannabinol (THC). Its (-)-trans-Δ9-THC isomer is a psychoactive substance that has been used as a drug for centuries. In most countries, both the private sale of cannabis products and their use for non-medical purposes are still prohibited by law. However, for some time now there has been societal and political pressure to at least partially legalize cannabis products. It can be expected that such a measure will lead to a significant increase in the consumption of cannabis. However, this also increases the possibility of involuntary passive exposure to THC and contamination of the indoor environment. In indoor sciences, THC is still a largely unknown or underrepresented substance. In this perspective paper, THC will therefore first be presented on the basis of its physical properties. Then, the distribution of THC in different indoor compartments and potential routes of passive exposure are discussed. Finally, an assessment of the future importance of THC for indoor use is made. Previous experience has shown that early monitoring is always advantageous so that preventive and protective measures can be taken quickly if necessary.


Asunto(s)
Cannabis , Dronabinol
4.
Regul Toxicol Pharmacol ; 144: 105492, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660942

RESUMEN

This publication reports the outcome of an acute inhalation toxicity study with guinea pigs by nose-only exposure to the substance 2-butoxyethanol at exposures close to the maximum attainable saturation vapour concentration. We describe the methods used to ensure exposure only to saturation vapour at a level as high as could be practically achieved whilst avoiding aerosol formation. We consider the practical difficulties and implications of testing substances at or close to their saturation vapour concentration and the criteria that should be used to critically assess such studies, especially with reference to the GHS (Globally Harmonised System) for classification and labelling, where a clear differentiation between gases, vapours and dust and mists applies. Guinea pigs showed no adverse effects when exposed for 4 h to the maximum attainable concentration of pure 2-butoxyethanol vapour. If guinea pigs are regarded as the most appropriate species to assess short term toxicity to humans from exposure to 2-butoxyethanol, because they are like humans not sensitive to haemolysis of red blood cells caused by exposure to the substance, then the data from this study shows that 2-butoxyethanol presents a low acute inhalation toxicity hazard.


Asunto(s)
Glicoles de Etileno , Hemólisis , Humanos , Cobayas , Animales , Glicoles de Etileno/toxicidad , Administración por Inhalación , Solventes/toxicidad
5.
Analyst ; 148(15): 3432-3451, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37431833

RESUMEN

Carbonyl compounds are ubiquitous in outdoor and indoor air. Due to the high electronegativity of the oxygen atom, they are polar in nature and the CO group opens possibilities for many types of chemical reactions. Their physical and chemical properties are additionally influenced by substituents and conjugated double bonds. The concentration ranges are also highly variable. Formaldehyde can reach 100 ppb or more in indoor air, but reaction products such as 4-oxopentanal (4-OPA) are in the lower ppb range or even below 1 ppb. Another point concerns the dynamics of carbonyls. When examining the emission of formaldehyde in test chambers, an equilibrium concentration is usually established, so that changes over time can be neglected during the measurement. On the other hand, many substances and scenarios are subject to strong fluctuations in concentration over short time periods. The analysis is also made more difficult by the fact that different methods are often required for saturated carbonyls, unsaturated carbonyls and dicarbonyls. This work focuses on aprotic carbonyl compounds such as aldehydes, ketones, lactams and pyrones with relevance for the indoor environment that do not contain any other reactive groups. The range of interesting compounds has grown significantly in recent years, notably through the derivation of health-based guide values, as well as through investigations into new products, human activities and human emissions from the skin and respiratory gas. Classical and modern analysis methods are discussed, which can be considered for the respective research question. Many small molecules require derivatization as a first step, followed by separation via gas chromatography or HPLC. Substance-specific detection without chromatographic separation is routinely used for formaldehyde. With some limitations, the identification of carbonyls in multicomponent mixtures is possible using online mass spectrometry. In particular, proton-transfer-reaction mass spectrometry (PTR-MS) has established as a method with high sensitivity and high time resolution.

6.
RSC Adv ; 13(26): 17856-17868, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37323443

RESUMEN

Proton transfer reaction mass spectrometry (PTR-MS) has become an indispensable analytical tool for indoor related sciences. With high-resolution techniques not only is the online monitoring of the selected ions in the gas phase possible, but also, with some limitations, the identification of substance mixtures without chromatographic separation. The quantification is carried out with the help of kinetic laws, which require knowledge of the conditions in the reaction chamber, the reduced ion moblilities and the reaction rate constant kPT under these conditions. Ion-dipole collision theory can be used to calculate kPT. One approach is an extension of Langevin's equation and is known as average dipole orientation (ADO). In a further development, the analytical solution of ADO was replaced by trajectory analysis, which resulted in capture theory. The calculations according to ADO and capture theory require precise knowledge of the dipole moment and the polarizability of the respective target molecule. However, for many relevant indoor related substances, these data are insufficiently known or not known at all. Consequently, the dipole moment µD and polarizability α of 114 organic compounds that are frequently found in indoor air had to be determined using advanced quantum mechanical methods. This required the development of an automated workflow that performs conformer analysis before computing µD and α using density functional theory (DFT). Then the reaction rate constants with the H3O+ ion are calculated according to the ADO theory (kADO), capture theory (kcap) and advanced capture theory for different conditions in the reaction chamber. The kinetic parameters are evaluated with regard to their plausibility and critically discussed for their applicability in PTR-MS measurements.

8.
Environ Sci Process Impacts ; 24(11): 2153-2166, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36222641

RESUMEN

The vapor pressure is a specific and temperature-dependent parameter that describes the volatility of a substance and thus its driving force for evaporation or sublimation into the gas phase. Depending on the magnitude of the vapor pressure, there are different methods for experimental determination. However, these are usually associated with a corresponding amount of effort and become less accurate as the vapor pressure decreases. For purposes of vapor pressure prediction, algorithms were developed that are usually based on quantitative structure-activity relationships (QSAR). The quantum mechanical (QM) approach followed here applies an alternative, much less empirical strategy, where the change in Gibbs free energy for the transition from the condensed to the gas phase is obtained from conformer ensembles computed for each phase separately. The results of this automatic, so-called CRENSO workflow are compared with experimentally determined vapor pressures for a large set of environmentally relevant compounds. In addition, comparisons are made with the single structure-based COSMO-RS QM approach, linear-free-energy relationships (LFER) as well as results from the SPARC program. We show that our CRENSO workflow is superior to conventional prediction models and provides reliable vapor pressures for liquids and sub-cooled liquids over a wide pressure range.


Asunto(s)
Compuestos Orgánicos Volátiles , Presión de Vapor , Transición de Fase , Temperatura , Algoritmos
9.
Indoor Air ; 32(10): e13142, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305077

RESUMEN

Implications for the academic and interpersonal development of children and adolescents underpin a global political consensus to maintain in-classroom teaching during the ongoing COVID-19 pandemic. In support of this aim, the WHO and UNICEF have called for schools around the globe to be made safer from the risk of COVID-19 transmission. Detailed guidance is needed on how this goal can be successfully implemented in a wide variety of educational settings in order to effectively mitigate impacts on the health of students, staff, their families, and society. This review provides a comprehensive synthesis of current scientific evidence and emerging standards in relation to the use of layered prevention strategies (involving masks, distancing, and ventilation), setting out the basis for their implementation in the school environment. In the presence of increasingly infectious SARS-Cov-2 variants, in-classroom teaching can only be safely maintained through a layered strategy combining multiple protective measures. The precise measures that are needed at any point in time depend upon a number of dynamic factors, including the specific threat-level posed by the circulating variant, the level of community infection, and the political acceptability of the resultant risk. By consistently implementing appropriate prophylaxis measures, evidence shows that the risk of infection from in-classroom teaching can be dramatically reduced. Current studies indicate that wearing high-quality masks and regular testing are amongst the most important measures in preventing infection transmission; whilst effective natural and mechanical ventilation systems have been shown to reduce infection risks in classrooms by over 80%.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Niño , Adolescente , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Máscaras , Pandemias/prevención & control , Instituciones Académicas
10.
Indoor Air ; 32(8): e13087, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36040280

RESUMEN

The SARS-CoV-2 pandemic, which suddenly appeared at the beginning of 2020, revealed our knowledge deficits in terms of ventilation and air pollution control. It took many weeks to realize that aerosols are the main route of transmission. The initial attempt to hold back these aerosols through textile masks seemed almost helpless, although there is sufficient knowledge about the retention capacity of fabric filters for aerosols. In the absence of a sufficient number of permanently installed heating, ventilation, and air conditioning systems, three main approaches are pursued: (a) increasing the air exchange rate by supplying fresh air, (b) using mobile air purifiers, and (c) disinfection by introducing active substances into the room air. This article discusses the feasibility of these different approaches critically. It also provides experimental results of air exchange measurements in a school classroom that is equipped with a built-in fan for supplying fresh air. With such a fan and a window tilted at the appropriate distance, an air exchange rate of 5/h can be set at a low power level and without any significant noise pollution. Heat balance calculations show that no additional heat exchanger is necessary in a normal classroom with outside temperatures above 10°C. Furthermore, a commercial mobile air purifier is studied in a chamber and a test room setup in order to examine and evaluate the efficiency of such devices against viable viruses under controlled and realistic conditions. For this purpose, bacteriophages of the type MS2 are used. Both window ventilation and air purifiers were found to be suitable to reduce the concentration of phages in the room.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Contaminación del Aire Interior/prevención & control , COVID-19/prevención & control , Humanos , Aerosoles y Gotitas Respiratorias , SARS-CoV-2 , Instituciones Académicas , Ventilación/métodos
11.
Environ Int ; 167: 107440, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35932535

RESUMEN

BACKGROUND: TVOC (total volatile organic compounds) has been used as a sum parameter in indoor air sciences for over 40 years. In the beginning, individual VOC concentrations determined by gas chromatography were simply added together. However, several methods for calculating TVOC have become established over time. METHODS: To understand the manifold definitions of TVOC, one must trace the history of indoor air sciences and analytical chemistry. Therefore, in this work, the original approaches of TVOC are searched and explained. A detailed description of the measurement methods is followed by a critical evaluation of the various TVOC values and their possible applications. The aim is to give the reader a deeper understanding of TVOC in order to use this parameter correctly and to be able to better assess published results. In addition, related sum values such as TSVOC and TVVOC are also addressed. RESULTS: A milestone was the analytical definition of VOCs and TVOC in 1997. A list of VOCs that should at least be considered when calculating TVOC was also provided. This list represented the status at that time, is no longer up-to-date and is being updated by a European working group as part of a harmonization process. However, there is still confusion about the exact definition and reasonable application of TVOC. The signals of other sum parameters, measured with photoacoustics, flame ionization, photoionization or electrochemical sensors, are also often given under the term TVOC. CONCLUSIONS: It was recognized early that TVOC is not a toxicologically based parameter and is therefore only suitable for a limited number of screening purposes. Consequently, TVOC cannot be used in connection with health-related and odor-related issues. Nevertheless, such references are repeatedly made, which has led to controversial scientific discussions and even court decisions in Germany about the correct and improper use of TVOC.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Alemania , Compuestos Orgánicos Volátiles/análisis
12.
Angew Chem Int Ed Engl ; 61(32): e202205713, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35670249

RESUMEN

Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor microplastics can result from abrasion, microplastic beads are frequently added to household products and microplastic granules can be found in artificial turf for sports activities and in synthetic admixtures in equestrian hall litter. In this context, the question arose as to what extent particulate emissions of thermoplastic materials from 3D printing should be at least partially classified as microplastics or nanoplastics. The discussion about textiles as a possible source of indoor microplastics has also been intensified. This Minireview gives an overview of the current exposure of residents to microplastics. Trends can be identified from the results and preventive measures can be derived if necessary. It is recommended that microplastics and their additives be given greater consideration in indoor environmental surveys in the future.


Asunto(s)
Microplásticos , Plásticos , Polvo/análisis , Monitoreo del Ambiente , Impresión Tridimensional
13.
Indoor Air ; 32(6): e13039, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35762234

RESUMEN

The IPCC 2021 report predicts rising global temperatures and more frequent extreme weather events in the future, which will have different effects on the regional climate and concentrations of ambient air pollutants. Consequently, changes in heat and mass transfer between the inside and outside of buildings will also have an increasing impact on indoor air quality. It is therefore surprising that indoor spaces and occupant well-being still play a subordinate role in the studies of climate change. To increase awareness for this topic, the Indoor Air Quality Climate Change (IAQCC) model system was developed, which allows short and long-term predictions of the indoor climate with respect to outdoor conditions. The IAQCC is a holistic model that combines different scenarios in the form of submodels: building physics, indoor emissions, chemical-physical reaction and transformation, mold growth, and indoor exposure. IAQCC allows simulation of indoor gas and particle concentrations with outdoor influences, indoor materials and activity emissions, particle deposition and coagulation, gas reactions, and SVOC partitioning. These key processes are fundamentally linked to temperature and relative humidity. With the aid of the building physics model, the indoor temperature and humidity, and pollutant transport in building zones can be simulated. The exposure model refers to the calculated concentrations and provides evaluations of indoor thermal comfort and exposure to gaseous, particulate, and microbial pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Cambio Climático , Humedad , Temperatura
14.
Indoor Air ; 32(5): e13022, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35622714

RESUMEN

From the thermodynamic perspective, the term temperature is clearly defined for ideal physical systems: A unique temperature can be assigned to each black body via its radiation spectrum, and the temperature of an ideal gas is given by the velocity distribution of the molecules. While the indoor environment is not an ideal system, fundamental physical and chemical processes, such as diffusion, partitioning equilibria, and chemical reactions, are predictably temperature-dependent. For example, the logarithm of reaction rate and equilibria constants are proportional to the reciprocal of the absolute temperature. It is therefore possible to have non-linear, very steep changes in chemical phenomena over a relatively small temperature range. On the contrary, transport processes are more influenced by spatial temperature, momentum, and pressure gradients as well as by the density, porosity, and composition of indoor materials. Consequently, emergent phenomena, such as emission rates or dynamic air concentrations, can be the result of complex temperature-dependent relationships that require a more empirical approach. Indoor environmental conditions are further influenced by the thermal comfort needs of occupants. Not only do occupants have to create thermal conditions that serve to maintain their core body temperature, which is usually accomplished by wearing appropriate clothing, but also the surroundings must be adapted so that they feel comfortable. This includes the interaction of the living space with the ambient environment, which can vary greatly by region and season. Design of houses, apartments, commercial buildings, and schools is generally utility and comfort driven, requiring an appropriate energy balance, sometimes considering ventilation but rarely including the impact of temperature on indoor contaminant levels. In our article, we start with a review of fundamental thermodynamic variables and discuss their influence on typical indoor processes. Then, we describe the heat balance of people in their thermal environment. An extensive literature study is devoted to the thermal conditions in buildings, the temperature-dependent release of indoor pollutants from materials and their distribution in the various interior compartments as well as aspects of indoor chemistry. Finally, we assess the need to consider temperature holistically with regard to the changes to be expected as a result of global emergencies such as climate change.


Asunto(s)
Contaminación del Aire Interior , Cambio Climático , Calor , Humanos , Temperatura , Ventilación
15.
Sci Rep ; 12(1): 3262, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228615

RESUMEN

As an indoor environment, public transport is subject to special conditions with many passengers in a comparatively small space. Therefore, both an efficient control of the climatic parameters and a good air exchange are necessary to avoid transmission and spread of respiratory diseases. However, in such a dynamic system it is practically impossible to determine pathogenic substances with the necessary temporal and spatial resolution, but easy-to-measure parameters allow the air quality to be assessed in a passenger compartment. Carbon dioxide has already proven to be a useful indicator, especially in environments with a high occupancy of people. Airborne particulate matter can also be an important aspect for assessing the air quality in an indoor space. Consequently, the time courses of temperature, relative humidity, carbon dioxide and particulate matter (PM10) were tracked and evaluated in local public transport buses, trams and trains in the Brunswick/Hanover region. In all measurements, the climatic conditions were comfortable for the passengers. Carbon dioxide was strongly correlated with occupancy and has proven to be the most informative parameter. The PM10 concentration, however, often correlated with the dynamics of people when getting on and off, but not with the occupancy. Sensors, equipped with integrated GPS, were installed in the passenger cabins and were found to be useful for recording location-related effects such as stops. The results of this study show that the online recording of simple parameters is a valuable tool for assessing air quality as a function of time, location and number of people. When the occupancy is high, a low carbon dioxide level indicates good ventilation, which automatically reduces the risk of infection. It is therefore recommended to take more advantage of low-cost sensors as a control for air conditioning systems in passenger cabins and for evaluations of the dynamics in public transport.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire Interior/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente/métodos , Humanos , Material Particulado/análisis , Ventilación
16.
Indoor Air ; 32(1): e12927, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473382

RESUMEN

Indoor air concentrations of formaldehyde, furfural, benzaldehyde, and 11 aliphatic aldehydes (C2 -C11 ) were measured in residences of 639 participants in the German Environmental Survey for Children and Adolescents 2014-2017 (GerES V). Sampling was conducted using passive samplers over periods of approximately seven days for each participant. The most abundant compounds were formaldehyde and hexanal with median concentrations of 24.9 µg m-3 and 10.9 µg m-3 , respectively. Formaldehyde concentrations exceeded the Guide Value I recommended by the German Committee on Indoor Guide Values (Ausschuss für Innenraumrichtwerte - AIR) (0.10 mg m-3 ) for 0.3% of the participating residences. The sum of aliphatic n-aldehydes between C4 (butanal) and C11 (undecanal) exceeded their Guide Value (0.10 mg m-3 ) for 2.0% of the residences. The geometric mean concentrations of most aldehydes were lower than in the earlier GerES IV (2003-2006) study. Formaldehyde and hexanal concentrations, however, were comparable in both studies and showed no significant difference. Indoor aldehyde concentrations did not exhibit significant correlations with factors collected in questionnaires, such as the age of the participants, their socio-economic status, the location of the residence (former East/West Germany), migration background, tobacco exposure, and the type of furniture used. The validity of the passive sampler measurements was verified against active sampling techniques in a test chamber experiment.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Adolescente , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Aldehídos/análisis , Benzaldehídos , Niño , Monitoreo del Ambiente/métodos , Formaldehído/análisis , Furaldehído , Humanos , Encuestas y Cuestionarios
17.
Environ Sci Technol ; 56(1): 379-391, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931808

RESUMEN

Octanol/water (KOW), octanol/air (KOA), and hexadecane/air (KHdA) partition coefficients are calculated for 67 organic compounds of environmental concern using computational chemistry. The extended CRENSO workflow applied here includes the calculation of extensive conformer ensembles with semiempirical methods and refinement through density functional theory, taking into account solvation models, especially COSMO-RS, and thermostatistical contributions. This approach is particularly advantageous for describing large and nonrigid molecules. With regard to KOW and KHdA, one can refer to many experimental data from direct and indirect measurement methods, and very good matches with results from our quantum chemical workflow are evident. In the case of the KOA values, however, good matches are only obtained for the experimentally determined values. Larger systematic deviations between data computed here and available, nonexperimental quantitative structure-activity relationship literature data occur in particular for phthalic acid esters and organophosphate esters. From a critical analysis of the coefficients calculated in this work and comparison with available literature data, we conclude that the presented quantum chemical composite approach is the most powerful so far for calculating reliable partition coefficients because all physical contributions to the conformational free energy are considered and the structure ensembles for the two phases are generated independently and consistently.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Agua , Octanoles/química , Agua/química
18.
Environ Sci Process Impacts ; 23(11): 1729-1746, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34591059

RESUMEN

Acrolein (2-propenal) is a reactive substance undergoing multiple reaction pathways and an airborne pollutant with known corrosive, toxic and hazardous effects to the environment and to human health. So far, investigating the occurrence of acrolein in indoor air has been challenging due to analytical limitations. The classic DNPH-method has proven to be error-prone, even though it is still recommended in specific testing protocols. Thus, different approaches for an accurate determination of ambient acrolein have been introduced. In this work, an overview of already published data regarding emission sources and air concentrations is provided. In addition, a new method for the quantitative determination of acrolein in environmental test chambers and in indoor air is presented. Analysis is carried out using thermal desorption and coupled gas chromatography/mass spectrometry (TD-GC/MS) after sampling on the graphitized carbon black (GCB) Carbograph™ 5TD. All analytical steps have been carefully validated and compared with derivatization techniques (DNPH and DNSH) as well as online detection using PTR-QMS. The sampling time is short due to the low air collection volume of 4 L. Although derivatization is not applied, a detection limit of 0.1 µg m-3 can be achieved. By increasing the sampling volume to 6 L, the limit of detection can be lowered to 0.08 µg m-3. No breakthrough during sampling or analyte loss during storage of the acrolein laden sampling tubes was found. Therefore, the presented method is robust, easy-to-handle and also very suitable for routine analyses and surveys.


Asunto(s)
Acroleína , Atmósfera , Acroleína/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos
19.
Environ Int ; 155: 106590, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33964641

RESUMEN

It has been known for a long time that incomplete combustion processes produce by-products that are harmful to human health. Particularly high concentrations of such by-products can arise in indoor environments when operating open flames without venting. The emission behavior of many combustion sources, including candles, has already been examined in detail. However, to date there are no studies in which the chemical composition of the candles is known exactly or where the candles were specifically manufactured for comparative measurements. In this respect, the study presented here, which was designed in collaboration with candle manufacturers and fragrance houses, demonstrates new insights into the emissions of burning candles depending on their composition. All investigations were carried out under controlled climatic conditions in an 8 m3 stainless steel chamber. Combinations of four different fuels (waxes) and five different fragrances in addition to one set of unscented control candles were examined. This resulted in 24 experiments, 20 with scented candles and four with unscented candles. The typical combustion gases carbon monoxide, carbon dioxide and NOx, organic compounds, such as formaldehyde, benzene, and polycyclic aromatic hydrocarbons, PM2.5 and ultrafine particles were monitored in the chamber air and the emission rates were determined. The data were statistically evaluated using parametric and non-parametric methods as well as hierarchical cluster analysis. Exposure scenarios typical for indoor environments were calculated from the emission rates and the results were compared with indoor guidance and reference values. As expected, a multitude of gaseous and particulate emissions were detected. These were typical combustion products as well as evaporated constituents of the fragrance mixtures. In most cases, the calculated indoor concentrations were well below the respective guidance and reference values. The exceptions observed in some cases for nitrogen dioxide, acrolein and benzo[a]pyrene are discussed critically.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Polvo , Gases , Humanos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
20.
Chemosphere ; 263: 127913, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32822931

RESUMEN

In addition to nitrogen, carbonyl compounds such as formaldehyde, acetaldehyde, isobutyraldehyde and crotonaldehyde can be released from slow release fertilizers based on urea-aldehyde by hydrolytic or biotic processes. A possible relevance of such releases in the practical application of corresponding products was investigated in laboratory experiments. In the first part, emissions of organic compounds from the pure products were determined in desiccators under static conditions in dry and water-saturated air as well as during direct contact with water. Significant emissions of isobutyraldehyde were found for products containing isobutylidene diurea. Several formulations emitted acetaldehyde and formaldehyde, especially in the case of higher air humidity and when solved in water. However, crotonaldehyde was not detected in the desiccator air. Other organic components such as herbicides or their degradation products and nitrification inhibitors were released from fertilizers containing these compounds. In further experiments, sticks and granules were applied into potting soil and the release of organic compounds in emission chambers was examined under dynamic conditions. No substances that could be directly attributed to the fertilizers were detected in these experiments. However, relevant emission rates of formaldehyde were observed for the spray fertilizers containing urea-formaldehyde after application to tomato plants. The possible contribution of these emissions to atmospheric formaldehyde concentrations is discussed. Finally, the formaldehyde concentrations in a greenhouse for private use are estimated. It is likely that immediately after spray application of a urea-formaldehyde fertilizer increased formaldehyde concentrations in the breathing air of the greenhouse occur.


Asunto(s)
Fertilizantes/análisis , Formaldehído/análisis , Nitrógeno/análisis , Acetaldehído , Agricultura , Aldehídos , Óxido Nitroso/análisis , Suelo , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...